

Grouting at the Idaho National Laboratory Tank Farm Facility

R. Mark Shaw, U. S. Department of Energy

E_M Environmental Management

Tank Farm Overview

Tank and Vault Grouting

Cooling Coil and Transfer Line Grouting

Em Environmental Management

Relatively Small Tank Farm Facility

- A system of 11 underground, 300,000-gallon stainless steel tanks
 - Tanks are fifty feet in diameter and ~ twenty-five feet tall
 - Eight tanks have cooling coils for removing radioactive decay heat from highly radioactive wastes.
 - Each tank has ~ three 12 inch risers
- Each 300,000-gallon tank is in a concrete vault
- Four 30,000-gallon stainless steel tanks were also used for storage (taken out of service in the early 1980s)
- Four 300,000-gallon tanks currently in use—three are full and one is a spare.

Idaho Tank Waste

- Several types of waste were stored in the tank farm:
 - Reprocessing wastes (1st, 2nd, 3rd cycle wastes)
 - Decontamination solutions
 - Laboratory wastes
 - Spent fuel basin water treatment discharges
 - Off-gas scrubber solutions
 - Sump water and condensate from tank farm transfer equipment
 - Other low activity miscellaneous plant wastes
- Tank wastes maintained as acidic solutions
- Evaporator systems used to minimize needed storage space
- ~9 million gallons of waste sent to tank farm
 - 900,000 gallons remain to be treated in IWTU

Cross-sectional view of a typical tank with cooling coils

E *M* Environmental Management

Construction Photo - Interior of Tank

E *M* Environmental Management

Closure Progress - Summary

- Seven large (300,000-gal) tanks (and vaults) and four small (30,000-gal) tanks have been cleaned and grouted.
- Cooling coils have been grouted.
- Transfer line and tank riser grouting is underway.

Tank Closure Sequence

M Environmental Management

05-GA90200-05

Tank Washing Set-up

E M Environmental Management

Typical Tank Cleaning System

EM Environmental Management diameter

Spray Cleaning

E_M Environmental Management

Tank WM-180 After Cleaning (Tank bottom)

E_M Environmental Management

Tank WM-182 After Tank Cleaning (Tank bottom)

E *M* Environmental Management

Tank WM-183 After Cleaning (Tank bottom base plate)

E_M Environmental Management

Tank WM-185 After Cleaning (Tank bottom)

E_M Environmental Management

Tank WM-185 After Cleaning (Tank bottom base plate)

E_M Environmental Management

Tank WM-186 After Cleaning (Tank bottom)

E_M Environmental Management

Three grout recipes were used...

- 1) Engineered Placement
- 2) Controlled Low Strength Material (CLSM)
- 3) Pipe Grout

- First 3-4 feet in bottom of tank, sequenced in six placements.
- Pushes residual solids toward steam jet, provides for some uplift and mixing, and encapsulates remaining residuals.
- Grout includes blast furnace slag to ensure reducing environment.
- Every truckload was tested.

Grout Addition

E M Environmental Management

Grouting of WM-184 – August 2007

E M Environmental Management

Schematic of the engineered grout placement sequence

E_M Environmental Management

Grout Mast from Riser TR-52

E_M Environmental Management

CLSM Pours

- Bulk fill from top of engineered placements to the dome level (riser access height), camera installed – placements in vault to match tank level
- Dome pours to fill most of dome section, fill location shifted to camera riser (no camera) placements in vault to match tank level

Tank and Vault Layers

E_M Environmental Management

Pipe Fill Grout Pours

 Top of Dome Pours – requires modifications to off-gas piping to allow filling the very top of the domes, then completion of the top layer in the vault (over the tank domes)

Tank and Vault Grouting

- Started Tank Grouting in Nov 2006
- Finished in Feb 2008

• Used approximately 25,000 yd3 of Grout.

Engineered Placement Grout:

0 lbs

- Blast Furnace Slag 351 lbs
- Pozzolan Class F 118 lbs
- Fine aggregate (sand) 2,491 lbs
- Water Up to 442 lbs (53 gal)
- High range water-reducer
 Up to 80 oz or as required to obtain slump and flow

Closure Controlled Low-Strength Material (CLSM)

•	Cement	300 lbs
	Comon	300108

- Pozzolan Class C 200 lbs
- Fine aggregate (sand) 1890 lbs.
- Water 38 gal
- Rheocell 30 14.5 oz. per cubic yard
- Glenium 3030 18 oz/cwt. cementious

material

Grout Recipes

Pipe Grout: (Hand Mix formula)

• Cement 94 lbs

• Pozzolan Class F 180 lbs

• Water 92 lbs (11 gallons)

• High range water-reducer 5 oz or as required to obtain flow

Pipe Grout: (Bulk from Batch Plant)

• Cement 750 lbs

Pozzolan Class F 1831 lbs

• Water 700 lbs (84 gallons)

• High range water-reducer 5 oz per cwt cementious material or as required to obtain flow

Cooling Coil Grouting

- Three of the 300k gallon and all four 30k gallon tanks had cooling coils.
- A total of 128 Cooling Coil lines
- 1 ½" diameter
- Each 300K gal tank had approx 9200' of cooling coil

Cooling Coils

E M Environmental Management

Cooling Coils

E_M Environmental Management

Cooling Coils

E *M*Environmental Management

Cooling Coils with Secondary Containment

E *M* Environmental Management

Cooling Coil Attachment Point

E M Environmental Management

Pipe Grout Mixer

E_M Environmental Management

Cooling Coils Grouting

- Started April 28, 2008
- Finished May 13, 2008

• Used about 9 yd3 of Grout

Transfer Line Grouting

- Transfer lines have secondary containment
 - Both the primary line and the secondary containment are grouted
- Volume of grout needed to fill each line was calculated

Material vented from line is managed as waste

Transfer Line Grout Hookup

E_M Environmental Management

Transfer Line Vent Points

E M Environmental Management

Transfer Line Vent Points

E_M Environmental Management

Vent Points

E_M Environmental Management

Transfer Line Grouting

Transfer line grouting is underway

• About 300' of piping remains to be grouted

• To date, over 7 miles of piping has been grouted

